
heat transfer in the range of small and medium values of the ~/~2 parameter under the 
assumption that the wall zone has been neglected. 

NOTATION 

a, thermal diffusi~ity in the granular bed; L, plate length; h, wall zone thickness; 
q, local thermal flux; q, thermal flux averaged along the plate; r, latent heat of phase 
transition; R, grain radius; T, Tw, and Ts, temperature, plate temperature, and temperature 
at the film's outer boundary, respectively; U, filtration rate; x and y, longitudinal and 
transverse coordinates, respectively; ~, heat transfer coefficient; ~ and ~, local and mean 
film thickness, respectively; %L, %w, and %e, thermal conductivity of the liquid, the wall 
zone, and the main body of the film, respectively; 0L and pg, densities of the liquid phase 
and vapor, respectively; ~, permeability of the bed; ~ , angle between the longitudinal 
coordinate x and the gravity acceleration vector g; e, angular velocity; ~ and v, dynamic 
and kinematic viscosity of the liquid, respectively. 
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PROPAGATION OF VIBRATIONS IN A SUSPENDED GRANULAR BED 

A. F. Ryzhkov and B. A. Putrik UDC 532.529.5:66.036.5 

The influence of the elasticity and relative motion of the continuous medium 
on the hydrodynamics of a suspended vibrating bed is discussed. A solution 
is given for the boundary-value problem of small pressure disturbances 
propagating in the bed. The results are compared with experimental data 
and calculations based on existing models. 

i. PHYSICAL MODEL 

The action of vibrations on disperse materials for the purpose of intensifying heat- 
and mass transfer processes has been utilized for some time now with optimistic results 
[i, 2]. On the other hand, the theory of vibrofluidization [3-5] is far from complete in 
either the quantitative or the qualitative aspect. It fails to describe high-frequency 
(>i0 Hz) resonance effects, which have been noted by many researchers, including Kroll [3] 
and Gutman [4], and which enhance heat and mass transfer significantly at their peak devel- 
opment [2]. The discrepancy with experimental results is an outgrowth of a common practice 
in the mechanics of fluidized systems (FS's) [6], namely the representation of the gaseous 
medium as an incompressible fluid, which limits the application of the theory to parameters 
that support the customary relation between the equilibrium pressure Po and its variation 
P: Po >> P. The latter corresponds quite well to " low" (APb << Po) fluidized beds, but 
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Fizicheskii Zhurnal, Vol. 54, No. 2, pp. 188-197, February, 1988. Original article sub- 
mitted October 17, 1986. 
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Fig. I. Resonance curves (a, b) and phase response curves 
(c) of a vibrating fluidized bed. i) f = 20 Hz, Sv = 0.26; 
2) 24, 0.51; 3) 77, 0.75; 4) Ho = 0.12 m, ~oT v = 0.379; 5) 
0.07, 0.6; 6) 0.05, 0.718; 7) calculated according to Eq. 
(ii); 8) according to Eq. (16), corundum; 2) from [43]; 
3, 4) from [32]. ~, rad. 

fails in application to FS's in which the pressure differences are close to the equilibrium 
value. Examples of such systems are moving high (>5-10 m) fluidized beds [6], vacuum 
fluidized beds [7], and vibrating fluidized beds. When the compressibility of the gas is 
taken into account in the latter case, the resonance parameters, dynamic elasticity, and 
swelling of the packed particulate material can be adequately estimated [8-10]. 

The effects of elasticity of the gas in FS's were first brought to attention by 
Davidson [ii], who drew an obvious analogy with the bubbling of a gas in a liquid. Binie 
[12] elaborated these notions, imparting elasticity to the entire mass of the fluidizing 
agent, and demonstrated the practicality of this approach for particles smaller than 0.2 
mm in diameter. The hypothesis of a concentrated (in bubbles, in the subgrid chamber, in 
the space beneath the bed, etc.) elasticity [ii] has been developed in later studies aimed 
at coarse granular materials [3, 13-18]. However, neither the frequency range nor the 
behavior of the dependences in the proposed models was modified in comparison with [6], 
whereas in experiments with finely dispersed FS's the same authors noted laws that are not 
inherent in the given models [3, 4, 16, 17]. 

Referring to thegeneral physical model of the FS as a two-fluid two-velocity continuum 
[6] and, in contrast with [19], retaining the compressibility of the continuous phase, we 
write 

D~(ep) + div(epU) = O, D~e--div((1 +. ~)V) = O; (1) 

p D U + g r a d P + ~ ( U - - V ) = 0 ,  pb D V - ~ ( U - V ) - ~ g = 0 .  (2) 

The x axis is directed vertically downward. 

2. ANALYSIS OF THE MOTION OF THE CONTINUOUS PHASE 

Estimating the significance of the inertial terms in Eq. (2), we obtain 

V N Vv ; DtV N VvO~; (Vv) V .-. I~2 /H, DV .-. Av~,~ ( I + ~ - )  .~ Av~OZ; 

U .~ (1 + 0~) Vv; D,U --. Uo; (UV) U ~ UZ/d. 
(3) 
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Fig.  2. Resonance p r e s s u r e s  (a) and f r e q u e n c i e s  (b, c) in a 
v i b r a t i n g  f l u i d i z e d  bed.  a,  b: 1) d = 45 um; 2) 57; 3) 72; 
4) 90; 5) 140; 6) 180; 7) 220; 8) 280; 9) 357; i0) 580; 13) 
calculated according to (ii); 14) according to (12); 15) ac- 
cording to (16); 16) according to (13); 17) qm (Ii), f = 
i0-i00 Hz, V v = 0.25-0.45 m/see; i-i0) corundum; ii) sand; 
12) glass; i, 2, 7-10) from [32]; 3, 5) [27]; 4, 6) [29]; ii) 
[3]; 12) [4]. c: i) var H (~H = flHP); 2) var ~, const A v 
(a m< ~P); 3) var m, const V v (~=~P); 4) var ~, const K v 
(~ > flmP). Solid curves: calculated according to (ii); 
dashed curves: calculated according to (16). 

Allowance is made here for the fact that the vibrational particle velocity varies over 
distances of the order of the bed height H, as opposed to a disperse system, in which this 
scale is only ~d, and convective accelerations compete with the local accelerations. Con- 
sequently, a rigorous analytical solution of Eqs. (2) is possible only in quasisteady 
motion of the gas [20], when the inertial forces* in it are considerably smaller than in 
the dispersion medium. Introducing the rate and depth of slippage of the phases, along 
with the local (vibrational) and convective Reynolds numbers [20], we obtain simple rela- 
tions for assessing the hydrodynamics of the suspended vibrating bed: 

]U--V[ @~Vv; S Av 0~; F pDU p ( 2 A#)  
d d Fb Pb DV Pb 

~c ( ) s (4) e~ "" i (eo~ + Uo) ~ l (~d~Iv)  = ~ -i- Uol(~d). 

The fundamental governing parameter in Eq. (4) is the dimensionless vibration frequen- 
cy @= . The following relations hold for small values of @=<@~N 0.I-0.01 (when 
Av/d - 101-102 , Av/H < 10 -2 , and Ob/P " 103) in the absence of forced blowing (Uo = 0): 

[U --  VI/Vv < 0,1--  0,01; S / d ~ l ;  F / ~ < 0 , 0 1 ;  R c < R v < 0 , 1 ;  

d d -~ (150/Vv) (P/P0 (1 --e) a v/eL 
(5) 

*The most significant of the other forces characterizing inertial effects in the fluid is 
the force F m associated with the influence of the apparent mass. However, its contribution, 
which has been determined previously [21], is almost an order of magnitude smaller than F. 
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Fig. 3. Mode shapes of the gas-pressure vibrations in a 
Vibrating fluidlzed bed. a) ~ = i: i) Ov = 0.359; 2) 
0.487; 3) 0.545; 4) 0.606; 5) 0.632; 6) 1.494; 7) 0.4; 8) 
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0.359; 2) 0.8, 2.465; 3) i, 0.359; 4) 1.65, 0.245; 5) 2.25, 
0.508; 6) 2.4, 0.366; 7) 2.53, 0.187; 8) 4.67, 0.517; 9) i0, 
0.516; i, 3; 4, 6, 7) from [32]; 2, 5, 8) [i0]; 9, i0) cal- 
culated according to (ii). 

The dynamics of collective motions in the heterogeneous medium is practically independent 
of inertial effects in the gas here. The motion of the gas relative to the particles, in 
turn, is characterized as quasilaminar and quasisteady. This state produces dynamic con- 
solidation and "blow-through resistance" on the part of the heterogeneous system, which 
vibrates essentially without expansion and slippage of the phases, much like a continuous 
medium. The bed closely resembles a stationary medium in terms of its heat- and mass- 
transfer properties. The excitation of relative motion in it requires that the parameters 
(V v, Uo) can be varied in such a way as to "unfreeze" the gas and thus achieve the relation 
S/d > i.* 

In the frequency range @~--8~ , where @~ ~2 , the ratioF/F b increases to -0.i, 
the contribution of the convective component increases, Rc/R v ~ 1-20, and intralayer 
(i < S/d << H/d) unsteady gas filtration develops in the granular interstices. On the one 
hand, the solid particles are capable of inertial motion relative to the gas (S/d > i), and 
the granular material can loosen up progressively by layers from top to bottom.% On the 
other hand, the jet flows and filtration mixing will probably be accompanied by microcircu- 
lation currents between the particles along with their growth and transverse vibration. 
While these phenomena do not affect the nature of the collective vibrations in the bed, 
they are significant in other, more subtle processes associated with heat and mass transfer 
and with chemical reactions;~ this assertion is confirmed indirectly by studies of the 
optimization and intensification of transport processes in a vibrating bed [26-28]. 

Phase slippage and convective flows develop in the given regime, preserving the pre- 
dominantly viscous nature of the filtration process, since the dimensions of the inter- 
stices (~d) always remain smaller here than the effective depth ~h of propagation of shear 
vibrations in the viscous fluid: 

d~,6h,~, ]/2~1~ =d", or Rv<Rv~'2. (6 )  

According to (6), the limiting particle size d" at frequencies of i0-i00 Hz is 0.7-0.2 
mm, corresponding to the upper grain-size limit for effectively vibration-fluidized disperse 
materials [2, 29] with "uncharacteristic!' attributes in their behavior [3, 4, 16, 17]. 

*Th~s conclusion is highly consistent with fluidization practice for finely disperse mater- 
ials [i, 2, 6, 23-25]. In view of the limited vibrational velocity capabilities of vibra- 
tion engineering, better results are attained by means of auxiliary forced blowing (Uo) 
[26]. 
%This vibration-induced loosening of finely disperse powders is observed, e.g., in high- 
speed motion pictures of the process [25]. 
tin particular, the occurrence of phase slippage S creates an active gas-exchange zone 

z S between the core of the layer and the vibrating surface. The motion of the gas 
particles in the core, tending in general along curved paths, resembles the motion of solid 
grains in the well-known model of Zabrodskii [29] and accelerates (by an unsteady mechanism 
[30]) the diffusion processes in the treated product by intensifying mass transfer [28]. 
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In the interval @~--O~" , where O~"N~9 , the flow structure changes, the depth of 
the viscous layer ~h becomes smaller than the pore diameter (~d), and an inertial core is 
formed in the middle of the interstices. The inertial forces of the gas and the particles 
in Eq. (2) become commensurate in this case, and the path of the fluid particle S increases 
from ~10:d to ~lOad, attaining values of almost the same order of magnitude as the bed 
height H, and the phase slippage rate is equal to (2-9)Vv, or 10~ : m/sec.* 

For Ov>O~" we have ~ d and S/H > i. As a result, the gas easily "slips through" 
from the space above the bed to the clearance below the bed and back again during one 
vibration period without any appreciable effect on the individual elements or on the packed 
bed as a whole. For the customary parameters (K~-~ 5~10 [29, p. 204]) this bed is thrown 
up above the bottom like a rigid porous body, completely consistent with the theory [3]. 
It is therefore suitable to use the quasisteady-state equation of motion of the gas in (2) 
under the condition Ov~O~". 

3. PROPAGATION OF PLANE WAVES IN A BOUNDED BED 

Owing to the high level of the dissipative forces [31], nonlinear effects are weak in 
a vibrating finely disperse packing, even when th e deviations of the gas pressure from the 
equilibrium pressure are not too small [32]. This means that the system (i), (2) can be 
treated in the linear approximation. Invoking the small perturbation method: P = Po + p, 
c = c + e, V = v, and eliminating variables, we obtain an equation for the propagation of 
elastic isothermal pressure waves of an ideal gas in a suspended granular bed: 

OttP -- a~ (1 + *vD,) V2P = O. (7) 

Equation (7) t describes the situation when the excess pressure in the fluid cannot 
relax under deformation of the interstices of the FS and creates a bulk elastic resistance to 
motion. This resistance increases as the particle diameter is decreased (O=-+0) and 
becomes much larger than the filtration frictional resistance. Considering the case of 
small (L << % with allowance for the constraints of the problem [29]) transverse dimensions 
of the bed, we arrive at the problem of the propagation of plane waves: V 2 = Dxx. 

Boundary Conditions. We choose the origin x = 0 on the surface of the layer, in which 
case the bottom of the ~paratus corresponds to x = H. Taking the nonseparated nature of 
the motion into account~ we express the velocity of the gas at the lower boundary in terms 
of the vibrational velocity of the bottom: U(H, t) = Re[iVvexp(imt) ] . Unlike the customary 
approach used in the continuum description [i0, 34, 35], the particles have a certain free 
motion. Consequently, for nonimpact [36] regimes we have V(H, t) = U(H, t) + (DxP)/~. 
This relation enables us to describe the dynamics of the suspended layer within the frame- 
work of a unified boundary-value problem not only during simultaneous motion of the parti- 
cles with the bottom (@v<<l) , but also with periodic separations (@v>2) . For the case 
of strong vibrations (Av ~2 >> g) we obtain the condition at the lower boundary from Eq. (2): 

D=P (H, t) + x~D~tP (H, t) = Re (]veXp (i~t)). (8) 

The fluctuations of the gas pressure decay atthe upper boundary. In the first approxima- 
tion,~ which is confirmed by practice [8, 39, 40~, we can assume that 

P(0, t ) = 0 .  (9) 

(7), (8), and (9) in the form p = Q(x)exp(imt), Obtaining a steady-state solution of Eqs. 
we reduce the problem to the corresponding problem for the configurational part: 

Q(x) +K2Q(x) = 0; A "z = oZ/(a~ (1 + iOv)); 

Q(o) = o; Q~(B)  = i:~(1 + ~o~). (lO) 

*The adequacy of this estimate is corroborated by direct experiment [22] and by tracer 
tests conducted by the authors in collaboration with M. A. Afanas'ev. 
#Equations of this type are used extensively in the description of various kinds of relax- 
ation processes [30]. Attempts to use the equations for the analysis of vibrofluidization 
have also been reported [i0, 29, 33]. 
*More rigorous approaches allowing for the finiteness of the Vibrations of the upper 
boundary and momentum losses with the expelled gas havebeen described [I0, 37]. A 
critique of the hypothesis [38] of internal wave reflection from the free boundary of the 
bed is also given in [37]. 
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Seeking a solution of Eq. (i0) in the form Q(x) = B(exp(Azx) + exp(A2x)) 
time-varying part into account, we obtain the required relation 

p (x, t) = Re (Q (X) exp (lot)) = IO (x)t cos (rot + ~p); 

IQ(x)l = ~q(x) Pv; Pv = p~oVvao; 

r I (x) = V'sh a (K2x) q- sin 2 (K~x) / I / G  (sh 2 (K=H) q- cos = (K,H)); 

Qx Qx 
K~x --: ax - -  V 1 q- r~/(2 ]/'2-Gv) ~, K~x = - -  u - -  0~/(2 ]/ '2G (1 q- G)); 

H H 

4 

r ~ %;  t g % = - - O , ;  t g % = - - ( 1 - k G ) / O ~ ;  
t~=l 

tg % = --: th ( - -  K2H) tg (K~H); tg r = cth (--/(~x) tg (/(~x). 

and taking the 

(11) 

4. DISCUSSION 

It follows from the solution that standing gas-pressure (and particle-velocity) waves 
are established in a suspended bed with periodicity characterized by the parameter ~x/H, 
where they modulate a complex system of standing and traveling waves [8, 41] and correlate 
weakly with the porosity waves [42], which are described by an equation of higher order 
than (7). The sharpness of the resonance peaks and the decay rate of the resonance 
pressure curves depend on the way in which the parameter fl is varied (Fig. i). The inter- 
action forces between the phases diminish as the vibration frequency ~ is increased. The 
pressure vibrations p~ rapidly become aperiodic in this situation, even in a bed of fine 
particles (50-100 ~m), and the higher-order resonances (and also the first resonances at 
frequencies 550 Hz) are practically nonexistent. This has a negative influence on the 
intensity of the secondary processes and has long been held as the cause of the presumed 
low (in comparison with a fluidized bed) thermal efficiency of the vibrating fluidized bed 
in general and of the high vibrating fluidized bed in particular [2]. On the other hand, 
if ~ is varied by increasing the height H, the damping of the bed does not change. Con- 
sequently, the pressure vibrations PH are also undamped at the higher-order resonances 
[32, 39], and this has a positive influence on the hydrodynamics and intensity of the 
transport processes in the bed [29]. The phase angle r at resonance, as usual, is =~/2. 
On the whole, the experimental points [32, 43] in Fig. i exhibit good correspondence with 
the calculated values for ~ < 2, when the structure of the model system most completely 
mirrors the true structure. For large values of ~, quantitative similarity is not always 
observed (points 2 in Figs. ib and ic), because of inhomogeneity and instability of the 
structure of the higher layers [29]. 

For Ov < 0.5 the resonance fluctuations of the dimensionless gas pressure and the 
frequencies obtained by the var H and var ~ procedures coincide: ~H = n~ and ~H = ~ (Fig. 
2). Thereafter ( Ov > 0.5) we have n H > n~ and flH > ~m, where the values of ~ remain con- 
stant. The independence of the resonance frequency ~ from~t~e friction forces is one of 
the fundamental postulates of the classical theory of vibrations [44]. However, its exten- 
sion to other techniques of "obtaining" the resonance curves [i0] is clearly unjustified. 

The form of the lower boundary condition has a strong influence on the qualitative 
and quantitative correspondence with theexperimental results for Ov>l . As mentioned, 
Eq. (8) places all soft (matrix-free) regimes of interaction between the bed and the 
bottom, including regimes with particle separation from the bottom, within finite limits. 
Consequently, the agreement of the ~H(@v) curve with the experimental for O~>I should 
not be unexpected. As an illustration, Fig. 2a (curve 14) shows the results of calcula- 
tions according to the relation 

N* = N (x) rv, (12) 

which is obtained when Eq. (7) is solved with the usual "nonseparation" condition for 
homogeneous media: DxP(H , t) = Re[jvexp(imt)]. It is evident that the behavior of Eq. 
(12) deviates considerably from (II) for @ > 0.5-1. A similar result is obtained (for 
the same reasons) from calculations according to a rheological viscoelastic model, for 
which the corresponding relations are given below (curve 15 in Fig, 2a). 
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In addition to the resonancefrequencies, the system has numerous "optimum" frequen- 
cies ~P corresponding to the maxima of the dimensioned pressure p as a function of the 
bed height or the vibration frequency* (Fig. 2c). The values of ~P depend on the vibration 
excitation conditions (i.e., on whether Av, Vv, or K v is constant). The curves of ~H p 
(under all conditions) and ~mP (for const V v) coincide with the ~H and ~m resonance curves, 
because the dimensioned factor Pv, which is used to establish the relation (ii) between 
p and ~, does not depend on m in this case. The situation is otherwise for const A v and 
const K v. Here Pv increases and offsets the above-resonance decrease of n as ~ is varied 
at a constant vibration amplitude, and this causes the extremum of p to vanish at @~ = 
1.728. Consequently, the ~mP(const Av) curve in Fig. 2c is cut off. When the vibrational 
acceleration is constant (const Kv), the function Pv(m) becomes hyperbolic, the resonance 
curve is smoothed# and the maximum of p shifts into the domain amP < i (Fig. 2c). 

It follows from [3, 4] that the variation with an increase in the parameter Ov ac- 
cording to Eq. (7) is much slower. This is evidenced by data on the pressure mode shapes 
in the bed (Fig. 3a). For @v<1 the wave profile is nearly sinusoidal. For a higher 
frequency Ov>>1 the distribution (at ~ z i) degenerates into a linear dependence, which is 
a significant departure from the calculations in [3, 4] according to a parabolic equation. 
Of the latter results, curve 8 in [4] is situated higher, having been obtained under a 
Neumann-type boundary condition, whereas a Dirichlet-type boundary condition is used in 
[3]. On the other hand, the solution (ii) goes over to an exponential dependence (of the 
type in [3], curve 7) when the depth of the bed is much greater than the elastic wave- 
length (curve 9 in Fig. 3b). 

The maximum (asymptotic) values of the pressures in the problems [3, 4] exceed the 
true values by 30-100%, which follows from the principle of equal potential energy of the 
layers in the variant components. Bearing this fact in mind, we replace the complex 
analytical relations of [3, 4] by the simple asymptotic expression 

Nef = ]/2-~/rv. (13) 
This expression gives an estimate of the limiting pressures described by the parabolic 

equation for the piezoelectric conductivity in the upheaved semiinfinite porous mass when 
the height H is replaced in the solution of [3] by the effective penetration depth of 
piezoelectrically generated waves H~.~.~V2a~T~/~ , which is obtained from the solution (7) 
for the case @v~1, ~! . 

It is evident from Fig. 2a (curve 16) that for O v~O$=2 the functian (13) agrees 
fairly well both with the continuum model and with the experimental data. For Or<2 
curve 16 exhibits a characteristic inflection, which mirrors the greater damping of the 
displacements of the dense layer relative to the hard surface. Since this is the state in 
which the "continuous" phase usually exists in an inhomogeneous fluidized bed, it is 
readily perceived that any motion of this phase, including chaotic motion, at a frequency 
below ~ ~ i/~ v will be damped. This accounts for the strong qualitative similarity between 
curve 16 and the standard curve of the maximum heat-transfer coefficient in a fluidized 
bed as a function of the particle diameter [45]. In particular, it follows from this re- 
sult that the forces of consolidation of small particles in the FS are more of a hydro- 
dynamic than a molecular [45] origin, consistent with the rigorous analysis in [20]. In a 
vibrating fluidized bed, which is considerably more homogeneous than a plain fluidized bed 
in the suspended regime and exists in a stable expanded state for @~ <@'v<@~" , the vibra- 
tions of all scales are of a slightly damped elastic nature, t and the maximum heat-transfer 
coefficients are close to their limiting values up to micromillimeter particles. 

The limit (Or< I) for application of the rheological analytical model in [9] instead 
of the continuum model is also obvious from this investigation. 

The equation for the forced vibrations of a suspended vibrating bed differ from [9] in 
the emergence of inhomogeneity on the right-hand side: 

yXi- m~T~# q- ~ y = A~ 2 cos (~0- (14) 

*Experimental confirmation can be found in [32, 42]. 
tThis contrasts with [i0], according to which the damping of vibrations in the vibrating 
bed, as in a dense layer, begins at a frequency m - I/T v. 
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The action of Eq. (14) can be illustrated by representing the FS by a set of particle 
monolayers separated by thin gas spaces. Motion is imparted to the n-th layer in this 
case by the elastic and viscous resistance forces: 

P0 
6g~= e~ d2 ((~g~+~-- 28g~ + 6g._~) 5 % (~Y.+a -- 2~g,~-5 ~9~_x)). (15) 

The summation of these resistances and their averaging over the height yields the 
left-hand side of Eq. (14). Solving it for the steady state and calculating the pressure 
as p = 0boHmoZ(y + ~vY), we obtain 

Pv Od~ , Q20~ 
cos (or--~); Ig~ (16) 

= 2 V i i  - + - ; 

2 V 2 ( , - o - 1 ) : ;  " 

A comparison of calculations according to Eq. (16) with the preceding analysis indi- 
cates (Figs. ic and 2c, dashed curves) the advantage of using the model (14) in engineering 
calculations under the stated conditions. 

NOTATION 

A, amplitude; a, sound velocity; d, particle diameter; F, inertial force; f, frequency; 
g, gravitational acceleration; H, bed height; h, relative height; j, specific inertial 
force; K, K~, K2, wave number and its real and imaginary parts; L, governing transverse 
dimension; P, p, pressure (of the gas); R, Reynolds number; r, modulus of a complex 
number; S, path traveled by the gas in one vibration half-period; t, time; U, u, gas veloci- 
ty; V, v, particle velocity; x, vertical coordinate;T, height-average deformation of the 
bed; 8, fluid friction coefficient of the fluidized system; 6, effective depth; e, e, 
porosity; q, dimensionless pressure (of the gas); Oo , dimensionless vibration frequency; 
~, wavelength; v, kinematic viscosity of the gas; 0, density (of the gas); ~v, phase 

velocity relaxation time; ~, ~ , phase angle; ~, relative frequency; ~, vibration frequency; 
~o, natural frequency of the fluidized system. Indices: v, vibration; h, hydrodynamic; 
c, convective; m, mass; 0, equilibrium, average, or initial value; b, bed; P, particle; 
H, ~, varied parameter in the system; p, corresponding maximum of the function p. Other 
symbols: D=d]~;Dt=O/at; Dx=O/Ox; V 2 , Laplace operator. Dimensionless and dimensioned 

g r o u p s :  a~=Po/(p~8o); h = x)H; j r =  ~bA~o2! Kv = AvO~/g; ~ = od~/v; Re = ( V v +  Uo) d/v; r~ = V  1 + o~ ; v v = Av~; ~ = 
150 (I - -  e) 2 pv 
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LAMINAR FLOW OF A LIQUID IN A ROTATING CYLINDER 

IN A GRAVITATIONAL FIELD 

I. N. Sidorov, Ya. D. Zolotonosov, 
G. N. Marchenko, and O. V. Maminov 

UDC 532.527 

The laminar flow of a viscous liquid in a vertical rotating cylinder is 
studied. 

We consider the axisymmetric flow of a viscous incompressible liquid in a semiinfinite 
rotating circular cylinder, where the axis of the cylinder is in the vertical direction 
(Fig. i). The approximate dimensionless system of equations describing the flow of the 
liquid in cylindrical coordinates, together with the initial and boundary conditions, has 
the form [i]: 

OH 1 0 1 OrV 
rU = (1) 

Or Re Or r Or ' 

OU 1 [3 0U OzU r (0_~rU)Z ] 
Oz---- l~e -&r + r  Or z 2U ' (2) 

OW OH 1 1 0 OW' 

"0~-- OZ +-~p -~- l~er Or r Or (3) 

1 OrV OW 
- -  + = 0, (4) 

r Or Oz 

W[z=o ~ 1, Vlz=o = O, Ulz=o = O, /-/Iz=o --- Po/pV2o , (5) 

W]r=l ----= O, Vlr=l = O, . Ulr=l = (ooR/vo) 2 = (o2, (6) 

where 

V__ v~ ; U =  1 ( v ,  )2 vz 
Vo "-r V \ vo I " W=--Vo  ' 

1 7 = P / p v ~ ;  R e =  Rvo . F p =  v~ 
' gR  

The s y s t e m  o f  e q u a t i o n s  (1) t h r o u g h  (4) i s  o b t a i n e d  by r e p l a c i n g  t h e  d e r i v a t i v e s  

W O- by --:a with the assumption that the radial component V of the velocity is small in 
Oz Oz 

compar i son  w i t h  t h e  a x i a l  W and r o t a t i o n a l  r  componen t s ,  and t h e  d e r i v a t i v e  o f  t h e  f low 
i n  t h e  d i r e c t i o n  o f  t h e  a x i s  i s  much s m a l l e r  t h a n  t h e  d e r i v a t i v e s  w i t h  r e s p e c t  to  t h e  r a d i a l  
coordinate [2]. 

According to the method given in [i] for solving the system (i) through (6), we look 
for the function ~ in the form: 
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